Search results for "Whitney forms"

showing 3 items of 3 documents

Generalized finite difference schemes with higher order Whitney forms

2021

Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee’s scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee’s scheme for all problems of a class characterised on a Minkowski manifold by (i) a pair of first ord…

Differential equationDifferential formsähkömagnetismiFirst-order partial differential equationdifferential formselectromagnetism010103 numerical & computational mathematics01 natural sciencesdifferentiaaligeometriaMinkowski spaceApplied mathematicsdifferential geometry0101 mathematicsFinite setfinite difference methodMathematicsNumerical AnalysisSpacetimeApplied MathematicsFinite difference methodFinite differencevector-valued formswhitney forms010101 applied mathematicsComputational MathematicsModeling and Simulationelasticityco-vector valued formsAnalysisESAIM: Mathematical Modelling and Numerical Analysis
researchProduct

Whitney forms and their extensions

2021

Whitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition to nonsimplicial cells and higher order functions. As a result, the term Whitney forms has become somewhat ambiguous in the literature. Our aim here is to clarify the concept of Whitney forms and explicitly explain their key properties. We discuss Whitney’s initial definition with more depth than usually, giving three equivalent ways to define Whitney forms. We give a comprehensive exposition of their main properties, including the proofs. Understanding of these propert…

osittaisdifferentiaaliyhtälötdifferentiaaligeometriaComputational MathematicsPure mathematicsDifferential formApplied MathematicsOrder (group theory)numeerinen analyysiTerm (logic)First orderMathematical proofWhitney formsMathematics
researchProduct

Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus

2022

AbstractWe present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to define higher order Whitney forms. Cochains on this refined mesh can then be interpolated using higher order Whitney forms. Hence, when the refined mesh is used with methods based on discrete exterior calculus, the solution can be expressed as a higher order Whitney form. We present algorithms for the three required steps: refining the mesh, solving the coefficients of the interpolant, and evaluating the interpolant at a given point. With our algorithms, the order of…

osittaisdifferentiaaliyhtälötnumeeriset menetelmätApplied Mathematicsdifferential formsdiskreetti matematiikkaMathematics::Algebraic Topologyinterpolationdiscrete exterior calculushigher order Whitney formscochainssimplicial meshinterpolointidifferentiaalilaskentaComputingMethodologies_COMPUTERGRAPHICSNumerical Algorithms
researchProduct